
Transport cost functions, network expansion
and economies of scope

Sergio R. Jara-D�ııaz *, Leonardo J. Basso

Department of Civil Engineering, Universidad de Chile, Casilla 228-3, Santiago, Chile

Abstract

This paper shows technically that economies of transport network expansion should be viewed through

the concept of economies of scope rather than through the concept of economies of scale. The basic
technological dimensions that are specific to transport production are identified. The framework is used to

derive explicit cost functions for two and three nodes systems in order to show how the potential technical

advantages of network expansions (new nodes served) are transferred into transport cost functions. These

advantages are shown to translate into economies of scope that can exist even under constant returns to

scale.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The product of a transport firm is a vector of flows of persons and goods, moved during a
number of periods and among many origins and destinations (OD pairs) in space (Jara-D�ııaz,
1982a). This detailed vectorial description of product has not been used in the estimation of
transport cost functions although ‘‘treating the movement of each commodity from each origin to
each destination as a separate product would be desirable. There would be so many outputs,
however, that estimating a cost function would be impossible’’ (Braeutigam, 1999, p. 68). This has
made the use of aggregate descriptions necessary, e.g. ton-kilometers, number of shipments or
seat-kilometers, each one synthesizing one or more dimensions of the actual product. Other
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attributes have been considered as well in the estimation of transport cost functions, as is the case
of average distance or load factor, which somehow try to capture output heterogeneity.
Econometric cost functions estimated using aggregated output have been used mainly to an-

alyze industry structure. As stated by Oum and Waters (1996), the first purpose of the empirical
measurement of transportation cost functions is the study of the ‘‘cost structure of the industry,
notably whether or not there are economies of scale. These are important for assessing the fea-
sibility of competition between firms of different size, and the long run equilibrium industrial
organization of an industry’’ (p. 425). Thus, estimated cost functions are aimed at understanding
for example, how many transport firms will serve a certain region. Will one firm cover the whole
network? Would it be less costly to have a few, each one serving part of the network?
When analyzing industry structure, the degree of economies of scale is probably the most

important concept that emerges as the center of this type of analysis. In transport, the use of
aggregates––that normally obviates the spatial dimension of product––has provoked the need to
make a distinction between economies of scale and economies of density, which have been as-
sociated to a varying or constant network size respectively. The usual approach is based upon an
estimated cost function eCCðeYY ;NÞ where eYY is a vector of aggregated product descriptions (including
the so-called attributes) and N is a variable representing the network (factor prices are suppressed
for simplicity). Returns to density (RTD) and returns to scale (RTS) are defined as

RTD ¼ 1P
j ~ggj

ð1Þ

RTS ¼ 1P
j ~ggj þ gN

ð2Þ

where ~ggj is the elasticity of eCCðeYY ;NÞ with respect to aggregate product j and gN is the elasticity with
respect to N , fulfilling RTS < RTD since the network elasticity is positive (as obtained in all
empirical studies).
According to Oum and Waters (1996, p. 429), ‘‘RTD is referred to the impact on average cost

of expanding all traffic, holding network size constant, whereas RTS refers to the impact on
average cost of equi-proportionate increases in traffic and network size’’. From this, the prevailing
interpretation on industry structure in the literature is simple. Increasing returns to scale
(RTS > 1) suggest that both product and network size should be increased because serving larger
networks would diminish average cost. Constant returns to scale together with increasing returns
to density (RTD > 1) would indicate that traffic should be increased keeping network constant.
This apparently straightforward analysis has an evident limitation, though: as RTS < RTD a firm
that has both optimal density and optimal network size cannot be described. Moreover, if net-
work size was optimal (RTS ¼ 1) the firm must exhibit increasing returns to density. This has
generated ad hoc explanations for the observed trend to expand networks in some industries 1 and

1 For example in the case of air transportation, Brueckner and Spiller (1994) state that ‘‘the growth of networks can

be understood as an attempt to exploit economies of traffic density, under which the marginal cost of carrying an extra

passenger on a non-stop route falls as traffic on the route rises’’. Note that under this interpretation an optimal network

size could never be reached.
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a growing controversy regarding what should be measured and what is measured from a cost
function in order to develop a meaningful analysis of industry structure (see for example Gagn�ee,
1990; Ying, 1992; Xu et al., 1994; Jara-D�ııaz and Cort�ees, 1996; Oum and Zhang, 1997; Jara-D�ııaz
et al., 2001). In our opinion, more effort has been devoted to the development of sophisticated
econometric tools than to the understanding of transport technology, which is, after all, what lies
behind the properties of a cost function. From this viewpoint, the spatial dimension of product
has been particularly neglected in the literature, in spite of the discussions and observations re-
garding this aspect by authors like Spady (1985), Daughety (1985) or Antoniou (1991).
The objective of this paper is to identify unambiguously the role of the spatial dimension of

product in the analysis of the transport industry structure, notably within the context of in-
creasing networks. This is done by means of the analysis of the links between disaggregated
product, transport technology and the cost function within the context of varying network size in
simple systems whose technology can be reproduced in some detail. The technical description of
transport processes in simple systems has been shown to be very useful to clarify some points
regarding industry structure, scale and scope. For example, Jara-D�ııaz (1982b) described the
technology and derived the corresponding cost function for a cyclical back-haul system (i.e. two
OD pairs) and was able to identify precisely the role of scale and scope within the context of a
(fixed) transport network, showing the ambiguity of the most popular aggregate description of
product (ton-kilometers). Most important, the technical analysis of transport production for such
a simple network was enough to provide an explanation for the incentives to merge between firms
serving different portions of a network even under the presence of constant returns to scale,
namely the existence of economies of spatial scope. This basic system, however, is not enough to
illustrate the effects of a network expansion.
In this paper we identify and define the elements that are essential to characterize the spatial

aspects of transport production (decisions of the firm). To do this, we use the two nodes system as
a basis to analyze the economics of a network expansion through the examination of both
technology and cost function of a three nodes system (six OD pairs). This seemingly simple de-
parture introduces a new dimension to the technical decisions of the firm, namely the choice of a
route structure to serve a given set of OD flows. With these tools, the analysis of proportional flow
expansions (scale) and the addition of new flows (scope) through network expansions can be
performed without ambiguity both technically (efficient frontiers) and economically (cost func-
tions). On this basis, the role of the spatial dimension of product and the so-called network effects
flow unambiguously within the context of the study of the transport industry structure. Note that
this technical analysis is not done with the intention to recommend the best way to operate such
systems, but to understand the relations between production in a transport network and the issues
in the analysis of industry structure as viewed with the aim of transport cost functions. The main
goal is to obtain elements to estimate, interpret and use empirically estimated transport cost
functions, which obviously represent fairly complex networks.
In the next section the decisions of a transport firm are identified with emphasis on the spatially

related elements. Then the analytics of production in a two nodes system is summarized in section
three in order to set the basis for the expansion to a three nodes system (Section 4), where the
potential of some aggregates actually used in the literature on cost functions is highlighted. The
analytically obtained cost functions are used in Section 5 to show how the spatial decisions (i.e.
how to use the network) translate into the calculation of economies of scale and scope, which are
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the main determinants of industry structure. Finally, the challenge on what to do with estimated
cost functions for a proper study of industrial organization is synthesized.

2. Decisions of a cost minimising transport firm

The microeconomic description of production processes rests upon the concepts of inputs,
outputs and technological feasibility. In the case of transport, a firm produces flows of different
things between different origins and destinations along different periods. Thus, transport product
is a vector (Jara-D�ııaz, 1982a) Y ¼ fyktij g where yktij is the amount of flow type k (e.g. persons or
goods), between origin i and destination j, during period t. This way, movements of passengers
between Santiago and Temuco during the last week of the year and the movement of fruit between
Santiago and New York during a week in July, are different products (even if we said passengers
instead of fruit). In this paper we will concentrate on the spatial dimension of product, namely its
OD structure, as this is the main distinctive feature of transport processes.
For a certain level of production Y , a transport firm has to make decisions regarding quantity

and characteristics of inputs (e.g. number of vehicles, number of loading–unloading sites and their
respective capacities) and operating rules (e.g. speeds, frequencies, load sizes). Because transport
production takes place on a network, a transport firm has to decide, as well, a service structure––
i.e. the generic way in which vehicles will visit the nodes to produce the flows––and a link sequence.
These two endogenous decisions define a route structure, which has to be chosen using exogenous
spatial information, namely the OD structure of demand (defined by the vector Y ), the location of
the nodes and the physical network. Note that the need to make a decision on a route structure is,
finally, a consequence of the spatial dimension of product. Note also that this type of decision is
essentially a discrete one. Let us illustrate these new important elements through an example with
three nodes and six OD pairs as shown in Fig. 1a, with a physical network as the one represented
in Fig. 1b.
Three possible service structures are shown in Fig. 2 (Jara-D�ııaz, 2000). Structure (a) corre-

sponds to a general cyclical system (G�aalvez, 1978), 2structure (b) corresponds to three simple
cyclical systems (direct service) and structure (c), where a distribution node is created, is known as
hub-and-spoke and is very common in air transport (note that hub H can or cannot coincide with
an origin or destination node). Regarding vehicle assignment to fleets, which is part of the service
structure, there is no choice but one fleet (one frequency) in case (a), three fleets in case (b) and
one, two (with three alternatives) or three fleets in case (c). If a cyclical system counter-clockwise
like the one in Fig. 2a was chosen, a possible route structure could be the one shown in Fig. 3.
As stated earlier, the decisions of a transport firm are three: quantity and characteristics of the

inputs, operating rules and route structure. Given the discrete nature of this latter decision, the
underlying cost minimizing process can be seen as a sequence with two stages. First, for a given

route structure the firm optimizes inputs and operating rules. After establishing the production
possibility frontier (technical optimality) input prices are considered and expenses are minimized.
A conditional cost function, that gives the minimum cost necessary to produce a given output Y for

2 Obviously, vehicles could circulate clockwise as well.
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given output prices and a known route structure, is obtained. In the second stage these conditional
cost functions (corresponding to alternative route structures) are compared and the global cost
function can be obtained by choosing the cost minimizing route structure.
In the next sections we apply these concepts and the approach to simple systems with two and

three nodes, following the two stages optimization process. We will show that varying the ex-
ogenous information, i.e. demand or network topology, both the optimal route structure and the
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Fig. 1. OD structure and physical network.
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Fig. 2. Service structures.
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3

Fig. 3. Route structure.

S.R. Jara-D�ııaz, L.J. Basso / Transportation Research Part E 39 (2003) 271–288 275



associated global cost function may vary as well. The process from technology to costs will prove
useful for the specification of aggregate product as well.

3. The two nodes system––synthesis 3

The simplest possible version of a multioutput transport firm is one serving a back-haul system
with two nodes (1 and 2) and two flows (y12 and y21) of a single product during a single period
(G�aalvez, 1978). Let us assume for simplicity that the firm operates the same fleet to move both
flows. Then vehicle frequency in both directions is the same, and given by the maximum necessary,
which in turn depends upon the relative flows; let us assume y12 P y21. Then the technical optimum
requires the vehicles in the 1 ! 2 direction to be fully loaded, which means that the load size in
this direction, k12 equals the capacity K of the vehicles. Frequency will be given by

f ¼ y12
k12

¼ y12
K

ð3Þ

and the load size in the opposite direction, k21 will be

k21 ¼
y21
f

¼ y21
y12

K ð4Þ

If loading and unloading are sequentially done at a rate l, if vehicle speed is v and d12 and d21 are
the distances that have to be traveled between the nodes in each direction, then cycle time tc of a
vehicle is given by

tc ¼
d12
v

þ 2K
l

þ 2k21
l

þ d21
v

ð5Þ

The required fleet size B is obtained as f times tc. From Eqs. (3)–(5)

BK ¼ y12
d12
v

�
þ 2K

l
þ d21

v

�
þ 2K

l
y21; with y12 > y21 ð6Þ

As this is valid only when y12 > y21 and there is a symmetrical expression for the other case, a
general version of Eq. (6) can be written. After some manipulations we get

yji ¼
lB
2

� d12 þ d21
v

� �
l
2K

�
þ 1

�
yij with yij > yji; i; j ¼ 1; 2; i 6¼ j: ð7Þ

Eq. (7) represents all vectors ðy12; y21Þ that can be produced efficiently with B vehicles of capacity
K, circulating at a speed v and using loading/unloading sites of capacity l (Jara-D�ııaz, 2000). 4

Under this frontier we find all combinations ðy12; y21Þ that are technically feasible.
To obtain total expenses in the production of a given vector Y , input prices have to be con-

sidered. Let g be vehicle fuel consumption per kilometer, e and h the number of men required to

3 The reader might want to see Jara-D�ııaz (1982b) for a fully explained first version of this approach.
4 Note that possible road congestion can be introduced in this technical analysis by making speed dependant on

frequency. The uncongested case has been preferred for simplicity only.
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operate a vehicle and a loading/unloading site respectively, w is the wage rate, Pg is fuel price, PK
and Pl are price per hour of a vehicle of capacity K and a loading/unloading site of capacity l
respectively (consider these either as rental prices or depreciation). Let g be independent of load
size and speed, let e and h be independent of K and l respectively, and consider the case of
y12 > y21. With these assumptions and variable definitions, vehicle expenses per hour including
rent and operation (labor and fuel) are given by

Pveh ¼ PK þ w 
 e þ Pg 
 g 

d12 þ d21
B 
 K y12 ð8Þ

Regarding loading/unloading sites, the expense per hour PS and the number of sites needed NS are
given, respectively, by

PS ¼ Pl þ wh ð9Þ

NS ¼ 2ðy12 þ y21Þ
l

ð10Þ

Next, total expenses G can be calculated as the sum of the payments for the right-of-way (C0), for
the vehicles (B times Pveh), and for the loading/unloading sites (NS times PS). Thus, from Eqs. (6),
(8)–(10) we get

GK;l;vðy12; y21Þ ¼ C0 þ ½PK þ we� 
 BðK; l; v; Y Þ þ Pg 
 g 
 ðd12 þ d21Þ
K

y12 þ
2 
 PS 
 ðy12 þ y21Þ

l

ð11Þ
where B is given by Eq. (6). To complete the first stage of the cost minimizing process, G should be
minimized with respect to K, l and v. To simplify matters, we will assume that these variables are
fixed. This means that vehicle and sites are available in a given size only, and speed is exogenously
determined by technical or legal facts. Thus, the optimal fleet size B
 for a given product Y is
directly given by Eq. (6), which replaced in Eq. (11) yields the cost function

Cðy12; y21Þ ¼ C0 þ y12ðd12 þ d21Þ 
 K þ ðy12 þ y21Þ 
 X ð12Þ
with

K ¼ PK þ we
vK

�
þ Pgg

K

�
and X ¼ 2

l
ðPK

�
þ weÞ þ 2PS

l

�
with a symmetric expression for y21 > y12.
It is interesting to note that Eq. (12) includes a flow-distance term and a pure flow term.

Following Jara-D�ııaz (1982b), the latter captures those expenses that occur while product is not in
motion, i.e. those due to terminal operations (as evident through X), while the flow-distance term
captures route expenses (evidently reflected by K). This allows us to extract two lessons regarding
output description in applied work. First, if only distance related measures are used in the
specification of a cost function (for example ton-kilometers and average length of haul), then the
real costs of transport production may not be adequately captured. We will highlight in the fol-
lowing sections the importance of this. Second, note that the flow-distance term is, in fact, the
capacity of the transport system, as only the largest flow appears––i.e. the one that equals fre-
quency times vehicle capacity––and is multiplied by the total distance traveled by each vehicle.
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This means that if product is passenger flows, for example, that term will be the total seat-kilo-
meters ‘‘produced’’ by the firm. This provides a justification for the use of such aggregates in the
literature on transport cost functions (see, for instance, Keeler and Formby, 1994): once the firm
has optimized operations such that the flows are served at a minimum cost, route expenses are
directly related with total transport capacity.
As explained, the two nodes system synthesized here is insufficient to show the two stages

optimization process completely. The second stage, namely the comparison between cost func-
tions that are conditional on route structure, is not applicable to this single route structure case.
However, this case will prove very useful for the explanation of the three nodes system, where a
choice on route structure indeed exists, and for the comparison of costs after a network expan-
sion.

4. The three nodes system

4.1. Conditional cost functions

Let us consider a six flows OD structure in a system with three nodes (see Fig. 1) connected by
three links of length dij. Note that for this simple physical network, the choice of a service
structure is conveniently coincidental with the choice of a route structure because there is no
decision on link sequence. We will keep the simplifying assumptions of the previous section,
namely the sequential loading/unloading procedure and known values of K, l and v. As explained
earlier, our goal in the first stage is to find cost functions that are conditional on the route
structure. Let us begin with a general cyclical counter-clockwise structure (Fig. 2a), which implies
the use of one fleet only. In this case, vehicle load size on each segment of the network k12, k23 and
k31 are defined by

k12 ¼
y12 þ y13 þ y32

f
; k23 ¼

y23 þ y21 þ y13
f

; k31 ¼
y31 þ y32 þ y21

f
ð13Þ

Assume arbitrarily that link 1–2 carries the largest load. This can be shown to be equivalent to
y12 þ y13 > y21 þ y31 and y12 þ y32 > y21 þ y23. Efficiency implies fully loaded vehicles on that seg-
ment, such that k12 ¼ K. Thus, frequency will be

f ¼ y12 þ y13 þ y32
K

ð14Þ

which trivially determines load size on the other two segments by replacing (14) into (13). Then,
cycle time is given by

tc ¼
d12 þ d23 þ d31

v
þ 2K

l
þ 2K

l

 ðy21 þ y23 þ y31Þ
ðy12 þ y13 þ y32Þ

ð15Þ

The production possibility frontier of this route structure is obtained recalling that fleet size B is
given by cycle time (Eq. (15)) times frequency (Eq. (14)), from which

BK ¼ ðy12 þ y13 þ y32Þ 

d12 þ d23 þ d31

v

�
þ 2K

l

�
þ 2K

l
ðy21 þ y23 þ y31Þ ð16Þ
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with

y12 þ y13 > y21 þ y31 and y12 þ y32 > y21 þ y23

Given K, l and v, Eq. (16) is directly B
ðY Þ. Just as we did with the two nodes system, the
conditional cost function is obtained calculating expenses per vehicle-hour times B
 and adding
loading/unloading sites expenses plus the right-of-way cost. Doing this and after some re-order-
ing, we get

CCGðY Þ ¼ C0 þ ðy12 þ y13 þ y32Þ 
 ðd12 þ d23 þ d31Þ 
 K þ ðy12 þ y13 þ y32 þ y21 þ y31
þ y23Þ 
 X ð17Þ

with

y12 þ y13 > y21 þ y31 and y12 þ y32 > y21 þ y23

that is the cost function conditional on a cyclical route structure, with K and X defined as in Eq.
(12).
The similarity between this conditional cost function and the one obtained for the two nodes

system (Eq. (12)) is evident. First, we obtain again the distance-flow term with the same meaning,
namely the capacity of the system, as the flows involved are those that define frequency. Second,
the pure flow term is generated by loading/unloading activities. Finally, note that the obtained
function reduces to that of the two nodes system if the four new flows are set to zero and d23 þ d31
is defined as d21.
Let us move to a second possible route structure, the one known as hub-and-spoke, very

common in air transport. A hub is a node that collects and distributes all flows, and usually
coincides with one that is origin and destination. Let us assume arbitrarily that the hub is in node
2, and that only one fleet (i.e. one frequency) operates. Obviously, other hub-and-spoke structures
could be considered as well, like a two fleet operation, one in 1–2 and the other in 2–3. We have
chosen to develop the one fleet structure because the others can be constructed adequately using
the two nodes system, as shown below. With our assumption (see Fig. 4) a vehicle loads flows y12
and y13 in node 1, unloads y12 in 2 and loads y23, then unloads y13 and y23 in 3, loading y32 and y31,
goes back to 2 to unload y32 and load y21 in order to go back to 1 to unload and begin the cycle
again.

1 2
k21

3

k32

k12

k23

Fig. 4. The hub-and-spoke route structure.
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In this case, the four load sizes are given by

k12 ¼
y12 þ y13

f
; k32 ¼

y32 þ y31
f

; k23 ¼
y23 þ y13

f
; k21 ¼

y31 þ y21
f

ð18Þ

Again we will assume that total flow in link 1–2 is the largest, which makes k12 equal to K and the
frequency of the hub-and-spoke system happens to be

f ¼ y12 þ y13
K

ð19Þ

Replacing (19) in (18) the other three load sizes are obtained. Cycle time and fleet capacity are
obtained as usual, which yields

tc ¼
d12 þ d23 þ d32 þ d21

v
þ 2K

l
þ 2K

l

 ðy21 þ y23 þ y31 þ y32Þ

ðy12 þ y13Þ
ð20Þ

BK ¼ ðy12 þ y13Þ 

d12 þ d23 þ d32 þ d21

v

�
þ 2K

l

�
þ 2K

l
ðy21 þ y23 þ y31 þ y32Þ ð21Þ

For given values of K, l and v, Eq. (21) represents B
ðY Þ for the hub-and-spoke structure. Fol-
lowing the same procedure as in the two previous cases, we obtain the cost function conditional in
the hub-and-spoke route structure, i.e.

CHSðY Þ ¼ C0 þ ðy12 þ y13Þ 
 ðd12 þ d23 þ d32 þ d21Þ 
 K þ ðy12 þ y13 þ y32 þ y21 þ y31 þ y23Þ 
 X
ð22Þ

whose terms have the same interpretation as the ones in Eqs. (12) and (17). Once again, a distance-
flow term representing the capacity of the system appears, as well as a pure flow term generated by
loading/unloading activities.
So far, we have obtained two conditional cost functions for the three nodes system. By simple

analogy, the conditional functions for other three route structures can be obtained as well: the
clockwise cyclical system and the hub-and-spoke systems with the hub in nodes 1 or 3. Addi-
tionally, adequately using the cost function for the two nodes system, we can derive conditional
cost functions for other cases: the direct service with three fleets, each one serving a pair of nodes
cyclically (1–2, 2–3 and 1–3), and the hub-and-spoke with two fleets, each one connecting a pair of
nodes (with the hub at any of the three nodes). Note that in this latter case some flows will have to
be loaded and unloaded twice (origin, destination and hub), which increases expenses unlike the
other cases, but cycle times will be shorter. This is not intended to be an exhaustive list, as other
alternative route structures are possible. However, the ones developed and explained here are
enough to illustrate that choosing a route structure is a key endogenous element, and to show that
the minimum cost is associated with such choice, which is what we do next.

4.2. Global cost function and the role of flows and network

The second stage of the sequential optimization process is the search for the optimal route
structure, i.e. the one that minimizes cost in the production of Y and defines the global cost
function. This second stage requires the comparison of the conditional cost functions obtained in
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the first stage. Let us illustrate this process in the three nodes system considering yij ¼ y (equal
flows) and the network shown in Fig. 5.
Let us define the following notation for the alternative route structures.

CG-123: cyclic counter-clockwise.
CG-132: cyclic clockwise.
3F: direct service; three fleets.
HS-i: hub-and-spoke with the hub in node i; one fleet.
2F-i: hub-and-spoke with the hub in node i; two fleets.

Using the conditional cost functions explicitly derived earlier and the definitions of the systems,
the conditional cost functions for each one can be constructed and evaluated for the equilateral
triangular network in Fig. 5 and equal flows on each OD pair. Omitting C0 for simplicity the
results are

CCG-123 ¼ CCG-132 ¼ 9 
 y 
 K þ 6 
 y 
 X
CHS-1 ¼ CHS-2 ¼ CHS-3 ¼ 8 
 y 
 K þ 6 
 y 
 X
C3F ¼ 6 
 y 
 K þ 6 
 y 
 X
C2F-1 ¼ C2F-2 ¼ C2F-3 ¼ 8 
 y 
 K þ 8 
 y 
 X

ð23Þ

Thus, it is optimum to serve the flows directly with three fleets, each one connecting a pair of
nodes. It is worth noting that the hub-and-spoke structures with two fleets have larger costs than
the ones with one fleet because of terminal operations, and that the cyclic systems have the largest
en-route costs. As we explained in Section 2, the choice of a route structure is dependant on
exogenous information, namely the OD structure of demand (the Y vector) and the network
topology. Therefore, now we want to examine the effect of a variation of this exogenous infor-
mation on the choice of an optimal route structure.
First, let us see the effect of changes in the OD structure of demand keeping the same physical

network (flow effect). Consider the OD structure represented in Fig. 6.
With these new values for the components of Y , we calculated the (conditional) cost for each of

the nine proposed route structures. Note that now flows are asymmetric, which induces the need
to identify the flows that generate the largest load size, as these are the ones that multiply the
constant K. The resulting costs are

1 2
1

1

3

1

Fig. 5. Physical network.
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CCG-123 ¼ 195 
 K þ 110 
 X CHS-1 ¼ 200 
 K þ 110 
 X
C2F-1 ¼ 170 
 K þ 160 
 X CCG-132 ¼ 165 
 K þ 110 
 X
CHS-2 ¼ 200 
 K þ 110 
 X C2F-2 ¼ 170 
 K þ 150 
 X
C3F ¼ 150 
 K þ 110 
 X CHS-3 ¼ 140 
 K þ 110 
 X
C2F-3 ¼ 140 
 K þ 130 
 X

ð24Þ

The new optimal route structure is the hub-and-spoke with one fleet and the hub in node 3, CHS-3.
This shows that a different OD structure can generate a new optimal route structure on the same
physical network (spatial distribution of nodes and link lengths).
Let us change the network as shown in Fig. 7, keeping the OD structure of Fig. 6, in order to

examine the network effect.
The new conditional costs functions happen to be

CCG-123 ¼ 390 
 K þ 110 
 X CHS-1 ¼ 300 
 K þ 110 
 X
C2F-1 ¼ 240 
 K þ 160 
 X CCG-132 ¼ 330 
 K þ 110 
 X
CHS-2 ¼ 500 
 K þ 110 
 X C2F-2 ¼ 440 
 K þ 150 
 X
C3F ¼ 300 
 K þ 110 
 X CHS-3 ¼ 280 
 K þ 110 
 X
C2F-3 ¼ 280 
 K þ 130 
 X

ð25Þ

Unlike the previous cases, now the optimal route structure depends on the values of K and X. The
HS-3 system (which was the best with the previous network) is still superior to both cyclic systems,
to 3F, to the other hub-and-spoke systems and to the two fleet systems but 2F-1. The hub-and-
spoke system with two fleets and the hub in node 1 could be superior to HS-3 depending on the
relative values of K and X, which are constants defined mostly by prices. Thus, the decision on the
optimal route structure will depend, in this case, on how expensive are the loading/unloading

1 2

15

10

3

30

5

30 20

Fig. 6. New OD structure of demand.

1 2
2

1

3
3

Fig. 7. New network: spatial distribution of nodes and link lengths.
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activities relative to activities en-route, which is very reasonable. Note that a proportional growth
of distances (links) would increase the difference between expenses en-route of the two structures,
keeping the difference between terminal expenses constant, which would increase the attractive-
ness of route structure 2F-1. This illustrates the network effect on the optimal route structure.
Before closing this section, we find important to stress two points. First, when dealing with real

data it is vital to be very precise about what is exogenous and what is endogenous in order to
avoid misinterpretations. Our impression is that in the literature, the concept of ‘‘network’’ has
been used in fairly different manners, conveying both endogenous decisions and exogenous in-
formation. Just as an example, the ‘‘network’’ descriptor number of route miles has been defined
either as the total miles of the physical network (exogenous information) or the number of miles
actually used (endogenously decided). Second, it is worth noting that it have been argued that in
the absence of economies of density, a monopoly airline would provide non-stop connections, i.e.
direct service, while in the presence of such economies, the airline would save money by operating
a hub network (see for instance Brueckner and Spiller, 1991). Our discussion regarding the im-
portance of the exogenous information in the cost minimizing behavior of firms, shows that the
selection of a route structure goes beyond the existence of decreasing or constant marginal costs at
the arc level. The importance of collecting adequately the costs of loading and unloading activ-
ities––which are not related to distances––in the empirical work, is now apparent.

5. Scale, scope and industry structure

Within a multioutput framework, increasing output has two meanings: increasing volume or
increasing the number of products. Scale economies are related with the behavior of cost as
products expand proportionally (radial analysis). On the other hand, economies of scope are
related with the impact on cost of adding new outputs to the line of production. Analytically, the
degree of economies of scale, S, can be calculated as the inverse of the sum of cost-product
elasticities (Panzar and Willig, 1975), such that a value of S greater, equal or less than 1 shows
increasing, constant or decreasing returns to scale respectively, indicating the relative convenience
of proportional expansions or reductions of output. The degree of economies of scope relative to a
subset R of products, SCR is calculated as (Panzar and Willig, 1981)

SCR ¼ CðY RÞ þ CðY M�RÞ þ CðY Þ
CðY Þ ð26Þ

where Y R is vector Y with yi ¼ 0, 8i 62 R � M , withM being the whole product set. Then, a positive
value for SCR indicates that it is cheaper to produce Y with one firm than to split production into
two orthogonal subsets R and M � R. It can be easily shown that SCR lies in the interval (�1; 1).
In the transport case, scale economies are related with the convenience or inconvenience of

expanding proportionally the flows in all OD pairs, while economies of scope are related with the
potential advantages or disadvantages of serving all OD pairs with one firm (for a full explanation
of the concepts of spatial scale and scope, see Jara-D�ııaz, 2000). Examining the different condi-
tional cost functions derived in the previous sections, we can observe that the choice of a route
structure will be invariant to proportional expansions of flows, i.e. the cost minimizing route
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structure will be the same. 5 It is quite simple to show that for all the conditional cost functions
(including that of the two nodes system) the degree of economies of scale S is given by the ratio
between CðY Þ and CðY Þ � C0. Then C0 ¼ 0 implies constant returns and C0 > 0 generates in-
creasing returns.
Regarding scope analysis, the two nodes system admits only one orthogonal partition. In this

case SC examines whether it is convenient to serve the two flows with one firm or to serve y12 with
one firm and y21 with other. It can be easily shown that SC is positive even if C0 ¼ 0 (Jara-D�ııaz,
1982b, 2000), such that a one firm operation is convenient basically due to the avoidance of idle
capacity. Note that for nil right-of-way costs, constant returns to scale coexist with economies of
scope, which means that, from a cost viewpoint, it would be convenient to have many firms
competing on this system, each one serving both OD pairs.
The analysis of scope in the three nodes system admits various possible orthogonal partitions of

the six flows product vector (Fig. 1a). However, the main motivation for the analysis of this
system was to study the case in which one node is added or subtracted from a firm service
(network expansion or reduction). Thus, let us consider the orthogonal partition
Y R ¼ fy12; y21; 0; 0; 0; 0g, Y M�R ¼ f0; 0; y13; y31; y23; y32g, which permits the comparison between one
firm serving all six flows against two firms, one serving the two flows between nodes 1 and 2 and
the other serving the rest. Note that CðY Þ � CðY RÞ is precisely the cost of adding the new node 3 to
the network {1,2}, not necessarily equal to CðY M�RÞ unless SCR was nil. As seen, the value of the
degree of economies of scope depends on the exogenous information (flows and network) because
the global cost function does. We will analyze the case depicted in Fig. 6 with link lengths equal to
one, with C0 ¼ 0 in order to get rid of the fixed cost effect that influences (increases) both scale and
scope. In this case, the global cost function for the firm serving all flows corresponds to that of the
HS-3 structure, which yields CðY Þ ¼ 140 
 K þ 110 
 X. On the other hand, the global cost function
for the two flows system is given by Eq. (10), which yields CðY RÞ ¼ 30 
 K þ 20 
 X for the values of
flows and distances in this case. For Y M�R the three nodes system analysis applies, with two flows
set to zero. It can be shown that the optimal route structure could be either 2F-3 or HS-3, both
with a cost CðY M�RÞ given by 120 
 K þ 90 
 X. Now we can calculate SCR from Eq. (26), which
yields

SCR ¼ ð30K þ 20XÞ þ ð120K þ 90XÞ � ð140K þ 110XÞ
CðY Þ ¼ 10 
 K

CðY Þ > 0: ð27Þ

This means that, even if C0 ¼ 0, the six flows will be better served with one firm. Note that in this
case savings occur due to expenses en-route, i.e. a single firm permits a better use of the fleet
capacity than two firms (vehicle load is larger in average) by means of adjustments in the route
structure. Note also that this might not happen for other values of Y or for another physical
network. The same applies to loading/unloading activities; in this particular case they are neither a
source of economies nor diseconomies of scope because in the three optimal route structures every

5 We must note, however, that more detailed technical considerations might have an impact on this result: the fact

that speed or fuel consumption could be dependent on load size, or that bigger vehicles and loading/unloading sites

could have scale advantages, or that congestion could be present, might change the optimal route structure after a

proportional growth of all OD flows.
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unit is loaded and unloaded once. Under other circumstances, a hub-and-spoke structure with two
fleets might be optimal in producing Y , with loading and unloading activities being a source of
diseconomies of spatial scope.
The results obtained with this example are enough to show two relevant aspects. First, route

structure is an important endogenous cost minimizing variable, which translates into a potential
source of economies of scope. As stated by Antoniou (1991), ‘‘Networking and the route structure
(. . .) is a well thought-out strategy aimed at taking full advantage of economies of scope and
economies of vehicle size’’ (p. 171). Second, we confirm that incentives to merge might appear
because of economies of spatial scope even under constant returns to scale (C0 ¼ 0). This shows
that the use of the concepts of economies of scale and economies of (spatial) scope as defined in
this article may help solving the problem presented by the couple RTD and RTS, namely that a
firm with no incentives to increase its density over a fixed network but with incentives to increase
its network may be described. Thus, economies of network expansion should not be looked at
through the concept of scale but through the concept of (spatial) scope.
Finally, it is important to emphasize that it was necessary to study a particular case in order to

analyze spatial scope correctly, because the characteristics of the physical network and the level of
production described as a vector Y , play a key role. Therefore, if these elements are not adequately
captured in the empirical work, the analysis of industry structure could be done incorrectly or
could be simply unfeasible.

6. Final comments and conclusions

The research described in this article is intended to increase our understanding of the basic
technological dimensions that are specific to transport production, in order to improve the
analysis of industry structure based upon the estimation of transport cost functions. We feel that
the econometrics behind the empirical approach have received much more attention than the
production process itself; progress in this latter area is urgently needed. In our opinion, it is
precisely the lack of a rigorous view of the key technical aspects, specifically the spatial dimension
of product, what is causing difficulties when it comes to make interpretations and inferences on
industry structure from estimated cost functions.
This paper shows technically that economies of transport network expansion should be viewed

through the concept of economies of scope rather than through the concept of economies of scale.
The generalization of the technical approach by Jara-D�ııaz (1982b, 2000) to a three nodes system
presented here, has been instrumental to emphasize the spatial nature of product and to illustrate,
in a fairly precise manner, the process that leads a cost minimizing transport firm to the opti-
mization of the route structure as a key endogenous decision. We have been particularly keen on
the distinction between what is truly exogenous to the firm––the OD structure of demand, net-
work topology and links description––from what is an endogenous decision as the route structure
(service structure and link sequence), showing how the optimal operation of a firm changes as the
exogenous variables change. This is a particularly relevant aspect, as all these network related
concepts have been treated in a somewhat confusing manner in the empirical work. For example,
several variables have been used to describe the network (number of points served, number of
route miles, even average length of haul), or the same network descriptor (number of route miles)
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has been defined in different ways, either as the total miles of the physical network or the number
of miles actually used.
The cost functions obtained for the two nodes system and for various cases in the three nodes

system have similar structures. They are separable into two terms: a pure flow term related with
expenses on terminal operations, and a flow-distance term directly related with en-route expenses.
This latter was shown to represent the optimal transport supply (capacity) offered by the firm (e.g.
seat-kilometers), a very reasonable result as en-route expenses depend on the fleet size, frequency
and distance traveled, variables that are optimized in order to minimize cost in the production of a
given vector Y . Thus, transport supply indices representing product proxies, sometimes used in the
empirical work, have received here theoretical support provided the firm is operating in a tech-
nically optimal way. The pure flow term was shown to be relevant in the selection of a route
structure because some structures imply additional loading and unloading. Thus, given the key
role of the route structure in the generation of scope economies, pure flow terms are particularly
important for industry structure analysis using aggregated output. When only distance related
variables are used to describe output (as is the case in many applied studies) loading/unloading
costs may not be adequately captured.
On the other hand, the analysis of scale, scope and industry structure involving relatively simple

transport networks technically described in detail, has generated important conclusions. For
synthesis, we have been able to show the process through which cost advantages arising from a
network expansion (new nodes served) are realized. In essence, fleet capacity can be better used by
means of variations in the route structure when new flows are incorporated to production after
this type of network expansion. From a microeconomic viewpoint, this translates into economies
of scope, which have been shown to exist even under constant returns to scale (in this case, the
absence of fixed costs). This provides a new conceptual framework that might help understanding
the observed behavior in some transport industries, which is a problem that, so far, has been
analyzed as a scale property, an inadequate approach in our view.
Thus, what we can call increasing returns to (spatial) scope are influenced not only by the OD

structure of demand––which is already a difficult aspect to cope with in the empirical work––but
also by the exogenous spatial information on the network (topology). Therefore, in order to
analyze correctly the potential advantages or disadvantages of network expansions through em-

pirically estimated cost functions, these elements have to be adequately captured. We believe that
this is mainly a problem of an adequate interpretation of ‘‘aggregate’’ cost functions eCCðeYY ;NÞ. So
far, this has been treated through ambiguous concepts like economies of scale with variable
network size under constant density, a concept that should be carefully examined in order to
improve the transport industry structure analysis. The challenge that lies ahead is how to calculate
economies of spatial scope from this type of cost function, which is exactly the work in which we
are presently engaged.
The two and three nodes networks technically analyzed here have been sufficient to prove the

main point, which is that network expansion should be studied through scope rather than scale
economies. As stated earlier, this approach was not intended to find optimal service structures for
transport firms, but to understand key issues relating cost functions, transport networks and
industrial organization. Nevertheless, it is worth asking whether further insight could be gained by
expanding this type of detailed analysis to larger networks when feasible. We believe that it might
help finding aggregate specifications for transport product that are adequate for the empirical
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estimation of cost functions. It could help as well to examine how optimal frequencies and route
structures affect aggregates that are used in the literature, as average distance or average load. It
should be stressed, though, that finding analytical cost functions for actual transport firms serving
many OD pairs over complex networks is simply unfeasible, which is precisely the reason why it is
done econometrically. The point is, however, that statistical feasibility should be no excuse to
forget neither the true product nor the type of decisions made by a transport firm on a network
when using this empirical cost functions for industrial organization analysis.
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